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LETTER TO THE EDITOR 

Graph identification by simulated annealing 

A S Mikhailov 
Department of Physics, Moscow State University, 117234 Moscow, USSR 

Received 8 February 1988 

Abstract. A new theoretical approach to graph processing, based on the transformation 
of a topological graph into a time-dependent periodic melody, is proposed. By using a 
self-tuning oscillatory dynamical network, graphs can be uniquely reconstructed from their 
melodies. This opens a perspective for a content-addressable memory invariant under 
large topology-preserving distortions. 

Current interest in the problems of graph processing by dynamical networks has two 
principal motivations. It is well known that operations with graphs (or semantic nets) 
should constitute an important property of artificial intelligence (Hogg and Huberman 
1987). Generally such operations involve generation, comparison, transformation and 
communication of graphs by dynamical networks. A closely related problem is the 
investigation of various physical processes taking place on graphs, such as activation 
spreading down over a graph (Huberman and Hogg 1987) or decay and diffusion in 
hierarchically organised systems (Engel et al 1988a, b). Another motivation comes 
from the field of pattern recognition. Although we now have several powerful models 
of content-addressable memory (Hopfield 1982, Sejnowski er al 1986, Gerzon and 
Mikhailov 1986) they remain very sensitive to topology-preserving distortions. Transla- 
tion or rotation of an image, its uniaxial stretching or contraction usually result in a 
loss of recognition. What we often need here is recognition of topological graphs 
rather than entire pictures. 

In this letter I want to propose a new theoretical approach to the processing of 
topological graphs which is based on their transformation into periodic time-dependent 
melodies. By using a self-tuning oscillatory network and the technique of simulated 
annealing (Kirkpatrick et a1 1983) a graph can be uniquely reconstructed (identified) 
from its melody. 

Any graph is a network of connections between elements. For simplicity, we 
consider below only the graphs formed by identical elements with symmetric identical 
connections. If we enumerate all elements in some sequence, such a graph can be 
specified by its connection matrix TJ,  with Tv = 1 when the elements i and j are 
connected, and Tu = 0 when the connection is absent. Since connections are symmetric, 
T,] = q,. It is convenient to put T,, = 0. 

The definition of a graph by the connection matrix T,, is highly degenerate since 
it depends on the particular choice of the enumeration sequence. Therefore, for 
example, the comparison of graphs defined by their connection matrices is an extremely 
complex problem. In order to find that certain two matrices describe the same graph 
one should try all possible enumeration sequence permutations and, thus, to perform 
about N 2 N  ! elementary operations. 
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Hence, it is natural to seek a corresponding dynamical system with the dynamics 
determined only by the pattern of connections and not by the enumeration choice. 

As an example of such a system we consider a set of identical massive particles 
tied by elastic strings and allowed to move only along a straight line (i.e. a one- 
dimensional molecule). Suppose that every particle corresponds to a certain graph 
element and any two particles are tied by a string only if the corresponding elements 
of the graph are connected?. 

In this manner any graph can be put into one-to-one correspondence with a certain 
one-dimensional molecule, described by the dynamical equations 

N 
Xi = - T. . (Xi  -x . )  

j = 1  

where xi is the coordinate of the ith particle. (Masses and elasticities are equal to unity.) 
Any one-dimensional molecule possesses a definite spectrum of oscillation frequen- 

cies {U,}, a = 1,. . . , N, such that A, = -ut are the eigenvalues of the real symmetrical 
matrix 

Clearly, this spectrum depends only on the pattern of ties in a molecule and not 
on the enumeration of its particles. What is more important, this spectrum of oscillation 
frequencies {U,} uniquely determines its one-dimensional molecule and hence the 
graph by which it was generated. This can be seen from the following arguments. 

The same set of eigenvalues {A,} would be found for any matrix R’ obtained from 
R by some non-degenerate linear transformation U: 

R’= U-IRU. (3) 
However, this new matrix R‘ can be attributed to some one-dimensional molecule, 
considered above, only if two conditions are satisfied. First, the non-diagonal elements 
of R’ should be equal only to either -1 or 0. Second, as follows from (2), any diagonal 
element of this matrix, taken with the opposite sign, should be equal to the sum of all 
other elements in the same line (or column, which is the same since the matrix must 
be symmetric), i.e. 

R,, = - C R,. (4) 
J # I  

Examination shows that these two conditions are very stringent and they can be 
simultaneously met (probably with few exclusions) only if the transformation U is 
equivalent to the change of enumeration of lines and columns in the matrix R, but 
then R’ would correspond to the same molecule. 

Therefore, any graph with N elements can be uniquely specified by the set of N 
frequencies {U,}. This is the most compact way it may be specified. Note that if we 
describe a graph by its connection matrix T, we should indicate the values of N ( N -  
1)/2 independent matrix elements, which reflects the high degeneracy of such a 
definition. 

When a molecule is excited, its oscillations generally represent a superposition of 
all normal modes. If we take as a time-dependent signal the quantity which is 

t I t  should be stressed that this example is purely hypothetical and serves only to demonstrate the principle 
of graph communication. 
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proportional to the displacement xi of a certain particle, it would give us a periodic 
‘melody’ that includes all oscillation frequencies w, and hence uniquely specifies the 
corresponding graph. 

Coding into melodies provides a natural way for comparison and recognition of 
graphs, and for the content-addressable memory invariant under topology-preserving 
transformations (Mikhailov 1988a). 

The next step consists of finding a dynamical system able to solve the inverse 
problem, i.e. to reconstruct a graph from its melody. 

With this purpose let us again consider a one-dimensional molecule but assume 
that its matrix of connections T~ is not fixed but mutates randomly in time. Moreover, 
we assume that oscillations of this molecule are slightly damped and there is an external 
periodic force f ( t )  applied to one of the particles. 

At fixed connections T~ this dynamical network is described by the equations 
N ‘. 

x;=- c T i j (X i -X j ) - yx ;+ f ( t )8 * i .  
j = 1  

Suppose that the periodic force f (  t )  represents a melody produced by some graph 
with N elements and is thus characterised by a certain oscillation spectrum { w , } ,  and 
consider a quantity 

N -  

9= = c x ? ( t )  
! = 1  

which is obtained by averaging over time intervals including many periods of individual 
oscillations. 

Then, for a given melody f( t )  and for a high enough resonance quality ( w ,  >> y ) ,  
9 is as large as the fit is close between the set of the eigenfrequencies { U & }  of the 
detecting molecule with connections T,, and the spectrum {w,}  of the applied melody. 

Suppose further that connections T~ can change randomly in time but these muta- 
tions are rather rare: an average interval between two successive mutations is much 
larger than the relaxation time t,,, = I /  y of the molecule detector. For simplicity we 
can assume that the mutation probability per unit time is the same for any connection 
and that the individual mutations (break or creation of a single connection) are 
independent. We choose the probability of a mutation per unit time as 

w = A exp( -9/ 8) (7) 

where Acc y. 
Such a dynamical network would tend to spend most time in a state with the 

maximal value of 8 which corresponds to the complete coincidence of the sets { w , }  
and { U & } .  Since every graph uniquely determines a certain set of oscillation frequencies, 
this implies that the most probable connection pattern in the molecule detector would 
be identical to the graph generating the applied melody. 

The coefficient 8 in (7) plays the role of temperature. Due to thermal fluctuations 
the process of self-tuning cannot stop on a graph that corresponds to some partial 
resonance. By slowly decreasing the temperature 8 we can simulate annealing and 
ensure that in the final state (at 8 = 0) our system would be found with the pattern of 
connections identical to the original graph. 

The aim of the present letter is to outline a general idea of graph coding and 
identification. Possible practical implementations will be discussed in a separate 
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publication (Mikhailov 1988b). Note that the proposed model might be easily realised 
in terms of electrical oscillatory networks with controlled switches. 

For computer simulations it is more convenient to use, instead of (7) ,  the Metropolis 
mutation algorithm (Metropolis et a1 1953), i.e. to assume that a tentative mutation is 
always accepted if it results in an increase of 9 ,  and accepted with a small probability 
proportional to exp(A9/8)  if the change A 9  is negative. This algorithm results in 
better convergence. 

Above it was assumed that the total number N ’  of elements in the detecting 
dynamical network is the same as the number of elements N in the original graph. It 
can be easily shown, however, that the network with N ’  elements can, as well, identify 
graphs of smaller sizes ( N  < N ’ ) .  It seems probable that, when the size of the detecting 
network is not as large as the size of the identified graph ( N  > N ’ ) ,  the result might 
be a ‘skeleton’ identification, i.e. the approximate reconstruction of a graph lacking 
its minor details. This question deserves further investigation. 
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